-->

Tuesday, November 5, 2024

[Solved] A Complete Guide to Handling AWS Fargate Pod Evictions Building Resilient Authentication Systems with diagram and code

 

Problem Statement

Organizations running authentication services on AWS EKS Fargate face a critical challenge: when AWS initiates mandatory infrastructure patches, pods running on outdated infrastructure are evicted after the patch deadline. In traditional single-pod authentication architectures, this leads to:

  1. Complete authentication system failure
  2. All active user sessions being terminated
  3. Applications becoming inaccessible
  4. Service disruptions requiring manual intervention
  5. Loss of business continuity

This guide presents a comprehensive solution to build resilient authentication systems that maintain service availability during pod evictions.

Traditional Vulnerable Architecture



In a typical single-pod authentication setup:


# Vulnerable Deployment Configuration apiVersion: apps/v1 kind: Deployment metadata: name: auth-service spec: replicas: 1 # Single point of failure selector: matchLabels: app: auth-service template: spec: containers: - name: auth-service image: auth-service:latest ports: - containerPort: 8080 volumeMounts: - name: local-data mountPath: /data volumes: - name: local-data emptyDir: {} # Non-persistent storage

Problems with Traditional Architecture

In many EKS deployments, applications directly integrate with authentication services, creating several critical issues:

  1. Single Point of Failure
    • Single authentication pod serving multiple applications
    • No redundancy in authentication layer
    • Direct dependency between applications and auth service
  2. Token Management Issues
    • No shared token storage
    • Session data lost during pod evictions
    • No token persistence across pod restarts
  3. Operational Challenges
    • Manual intervention required during patches
    • Service disruption during pod evictions
    • Complex recovery procedures

Impact Analysis

When AWS initiates mandatory patches on Fargate infrastructure, the following sequence occurs:

# Timeline of Events 1. AWS Announces Patch: - Notification received - Deadline set for infrastructure update 2. Grace Period Expires: - Authentication pod marked for eviction - SIGTERM signal sent to pod 3. Service Impact: - Authentication pod terminated - All active sessions lost - Applications unable to validate tokens - New authentication requests fail 4. Cascading Failures: - Application endpoints return 401/403 errors - User sessions terminated - Backend services disrupted

Resilient Architecture Solution

Singe Region:-


Multiple Region:-



Understanding EKS Fargate Patch Management

The Patching Process

  1. Announcement Phase
    • AWS announces new patches for Fargate infrastructure
    • Notice is provided through AWS Health Dashboard and email notifications
    • A deadline is communicated (typically several weeks in advance)
    • Patches may include security updates, bug fixes, or performance improvements
  2. Grace Period
      • New pods are scheduled on the updated infrastructure
    • Existing pods continue running on the old infrastructure
    • Organizations should use this time to test and plan their migration
  3. Enforcement Phase
    • After the deadline, AWS begins evicting pods from outdated infrastructure
    • Pods receive SIGTERM signals followed by SIGKILL after grace period
    • Evictions follow Kubernetes PodDisruptionBudget rules

Migration Path

To migrate from the vulnerable architecture to a resilient solution:

  1. Phase 1: Add Redundancy
    • Deploy multiple auth pods
    • Implement load balancing
    • Add health checks
  2. Phase 2: Add Persistent Storage
    • Deploy Redis cluster
    • Configure session persistence
    • Migrate to distributed tokens
  3. Phase 3: Improve Monitoring
    • Add metrics collection
    • Implement alerting
    • Create runbooks
  4. Phase 4: Update Applications
    • Implement circuit breakers
    • Add retry mechanisms
    • Update token handling


1. Deployment Configuration


# Resilient Authentication Service Deployment apiVersion: apps/v1 kind: Deployment metadata: name: auth-service spec: replicas: 3 # Multiple replicas for redundancy strategy: type: RollingUpdate rollingUpdate: maxUnavailable: 0 maxSurge: 1 template: spec: affinity: podAntiAffinity: preferredDuringSchedulingIgnoredDuringExecution: - weight: 100 podAffinityTerm: topologyKey: topology.kubernetes.io/zone labelSelector: matchLabels: app: auth-service containers: - name: auth-service image: auth-service:latest env: - name: DB_HOST value: "postgres-primary" - name: REDIS_HOSTS value: "redis-0.redis:6379,redis-1.redis:6379,redis-2.redis:6379" - name: CLUSTER_ENABLED value: "true" readinessProbe: httpGet: path: /health port: 8080 initialDelaySeconds: 10 periodSeconds: 5 livenessProbe: httpGet: path: /health/live port: 8080 initialDelaySeconds: 15 periodSeconds: 10


2. Persistent Storage Configuration


# PostgreSQL StatefulSet for User Data and Configuration apiVersion: apps/v1 kind: StatefulSet metadata: name: postgres spec: serviceName: postgres replicas: 2 template: spec: containers: - name: postgres image: postgres:14 env: - name: POSTGRES_DB value: authdb - name: POSTGRES_USER valueFrom: secretKeyRef: name: db-credentials key: username volumeMounts: - name: postgres-data mountPath: /var/lib/postgresql/data volumeClaimTemplates: - metadata: name: postgres-data spec: accessModes: [ "ReadWriteOnce" ] resources: requests: storage: 20Gi


3. Session Management Configuration


# Redis Cluster for Session Management apiVersion: apps/v1 kind: StatefulSet metadata: name: redis spec: serviceName: redis replicas: 3 template: spec: containers: - name: redis image: redis:6.2 command: - redis-server - /usr/local/etc/redis/redis.conf - --cluster-enabled - "yes" ports: - containerPort: 6379 volumeMounts: - name: redis-data mountPath: /data volumeClaimTemplates: - metadata: name: redis-data spec: accessModes: [ "ReadWriteOnce" ] resources: requests: storage: 10Gi


4. Service Configuration


# Load Balanced Service apiVersion: v1 kind: Service metadata: name: auth-service spec: type: ClusterIP ports: - port: 80 targetPort: 8080 selector: app: auth-service --- # Pod Disruption Budget apiVersion: policy/v1 kind: PodDisruptionBudget metadata: name: auth-pdb spec: minAvailable: 2 selector: matchLabels: app: auth-service

Implementation Details

1. Authentication Service Code


// Session management implementation class SessionManager { private redisCluster: IORedis.Cluster; constructor() { this.redisCluster = new IORedis.Cluster( process.env.REDIS_HOSTS.split(',').map(host => ({ host: host.split(':')[0], port: parseInt(host.split(':')[1]) })) ); } async storeSession(sessionId: string, data: SessionData): Promise<void> { await this.redisCluster.set( `session:${sessionId}`, JSON.stringify(data), 'EX', 3600 // 1 hour expiry ); } async getSession(sessionId: string): Promise<SessionData | null> { const data = await this.redisCluster.get(`session:${sessionId}`); return data ? JSON.parse(data) : null; } }

2. Database Schema


-- User and configuration management CREATE TABLE users ( id UUID PRIMARY KEY, username VARCHAR(255) UNIQUE, email VARCHAR(255), created_at TIMESTAMP WITH TIME ZONE, last_modified TIMESTAMP WITH TIME ZONE ); CREATE TABLE configuration ( key VARCHAR(255) PRIMARY KEY, value JSONB, last_modified TIMESTAMP WITH TIME ZONE ); CREATE TABLE roles ( id UUID PRIMARY KEY, name VARCHAR(255) UNIQUE, permissions JSONB );

3. Health Check Implementation


class HealthCheck { async checkHealth(): Promise<HealthStatus> { const dbHealth = await this.checkDatabase(); const redisHealth = await this.checkRedis(); const systemHealth = await this.checkSystem(); return { status: dbHealth.healthy && redisHealth.healthy && systemHealth.healthy ? 'healthy' : 'unhealthy', components: { database: dbHealth, redis: redisHealth, system: systemHealth } }; } }

Deployment Process

  1. Initial Setup

# Deploy storage layer kubectl apply -f postgres-statefulset.yaml kubectl apply -f redis-cluster.yaml # Deploy authentication service kubectl apply -f auth-deployment.yaml kubectl apply -f auth-service.yaml kubectl apply -f auth-pdb.yaml
  1. Verification

# Verify pod distribution kubectl get pods -o wide # Check cluster health kubectl exec -it redis-0 -- redis-cli cluster info kubectl exec -it postgres-0 -- psql -U auth_user -c "SELECT pg_is_in_recovery();"

Benefits of Resilient Architecture

  1. Zero-Downtime Operations
    • Continuous service during pod evictions
    • Automatic session migration
    • No manual intervention required
  2. High Availability
    • Multiple authentication pods
    • Distributed session storage
    • Replicated configuration data
  3. Scalability
    • Horizontal scaling capability
    • Load distribution
    • Resource optimization
  4. Maintenance Benefits
    • Easy updates and patches
    • No service disruption
    • Automatic failover

Building Resilient Applications

1. Implement Graceful Shutdown Handling


# Example Python application with Kubernetes-aware shutdown import signal import time import sys from kubernetes import client, config class Application: def __init__(self): self.running = True signal.signal(signal.SIGTERM, self.handle_sigterm) def handle_sigterm(self, signum, frame): print("Received SIGTERM signal") self.running = False self.graceful_shutdown() def graceful_shutdown(self): print("Starting graceful shutdown...") # 1. Stop accepting new requests # 2. Wait for ongoing requests to complete # 3. Close database connections time.sleep(10) # Give time for load balancer to deregister print("Shutdown complete") sys.exit(0) app = Application()

2. State Management

# Example StatefulSet for stateful applications apiVersion: apps/v1 kind: StatefulSet metadata: name: stateful-app spec: serviceName: stateful-service replicas: 3 selector: matchLabels: app: stateful-app template: metadata: labels: app: stateful-app spec: containers: - name: app image: stateful-app:1.0 volumeMounts: - name: data mountPath: /data volumeClaimTemplates: - metadata: name: data spec: accessModes: [ "ReadWriteOnce" ] resources: requests: storage: 1Gi

Monitoring and Observability


apiVersion: monitoring.coreos.com/v1 kind: PrometheusRule metadata: name: auth-alerts spec: groups: - name: auth-system rules: - alert: AuthenticationPodCount expr: | count(up{job="auth-service"}) < 2 for: 5m labels: severity: critical annotations: summary: "Insufficient authentication pods"

Prometheus and Kubernetes Events Monitoring

# Example PrometheusRule for monitoring pod evictions apiVersion: monitoring.coreos.com/v1 kind: PrometheusRule metadata: name: pod-eviction-alerts spec: groups: - name: pod-evictions rules: - alert: HighPodEvictionRate expr: | sum(rate(kube_pod_deleted{reason="Evicted"}[5m])) > 0.1 for: 5m labels: severity: warning annotations: summary: High rate of pod evictions detected

Custom Metrics for Application Health

# Example ServiceMonitor for Prometheus apiVersion: monitoring.coreos.com/v1 kind: ServiceMonitor metadata: name: app-monitor spec: selector: matchLabels: app: my-app endpoints: - port: metrics

Conclusion

By implementing this resilient architecture:

  1. Pod evictions no longer cause service disruptions
  2. Authentication services remain available during patches
  3. No manual intervention required
  4. Applications maintain continuous operation
  5. User sessions persist across pod restarts

The key to success lies in:

  • Distributed deployment
  • Shared state management
  • Proper health monitoring
  • Automated failover mechanisms
  • Regular testing and validation

This architecture ensures that AWS Fargate patch-related pod evictions become a routine operational event rather than a critical incident requiring immediate attention.

0 comments:

Post a Comment